Skip to contents

Overview

echor downloads wastewater discharge and air emission data for EPA permitted facilities using the EPA ECHO API.

Installation

echor is on CRAN:

install.packages("echor")

Or install the development version:

install.packages('echor', repos = 'https://mps9506.r-universe.dev')

Examples

Download information about facilities with an NPDES permit

We can look up plants by permit id, bounding box, and numerous other parameters. I plan on providing documentation of available parameters. However, arguments can be looked up here: get_cwa_rest_services_get_facility_info

library(echor)

## echoWaterGetFacilityInfo() will return a dataframe or simple features (sf) dataframe.

df <- echoWaterGetFacilityInfo(output = "df", 
                               xmin = '-96.387509', 
                               ymin = '30.583572', 
                               xmax = '-96.281422', 
                               ymax = '30.640008',
                               p_ptype = "NPD")

head(df)
#> # A tibble: 4 × 26
#>   CWPName            SourceID CWPStreet CWPCity CWPState CWPStateDistrict CWPZip
#>   <chr>              <chr>    <chr>     <chr>   <chr>    <chr>            <chr> 
#> 1 CARTER CREEK WWTP  TX00471… 2200 NOR… COLLEG… TX       09               77845 
#> 2 CENTRAL UTILITY P… TX00027… 222 IREL… COLLEG… TX       09               77843 
#> 3 HEAT TRANSFER RES… TX01065… 0.25MI S… COLLEG… TX       09               77845 
#> 4 TURKEY CREEK WWTP  TX00624… 3000FT W… BRYAN   TX       09               77807 
#> # ℹ 19 more variables: MasterExternalPermitNmbr <chr>, RegistryID <chr>,
#> #   CWPCounty <chr>, CWPEPARegion <chr>, FacDerivedHuc <chr>,
#> #   CWPNAICSCodes <chr>, FacLat <dbl>, FacLong <dbl>,
#> #   CWPTotalDesignFlowNmbr <dbl>, DschToMs4 <chr>, ExposedActivity <chr>,
#> #   NPDESDataGroupsDescs <chr>, MsgpFacilityInspctnSmmry <chr>,
#> #   MsgpCorrectiveActionSmmry <chr>, AIRIDs <chr>, NPDESIDs <chr>,
#> #   SDWAIDs <chr>, AlrExceeds1yr <dbl>, CertifiedDate <date>

The ECHO database can provide over 270 different columns. echor returns a subset of these columns that should work for most users. However, you can specify what data you want returned. Use echoWaterGetMeta() to return a dataframe with column numbers, names, and descriptions to identify the columns you want returned. Then include the column numbers as a comma separated string in the qcolumns argument. In the example below, the qcolumns argument indicates the dataframe will include plant name, 8-digit HUC, latitude, longitude, and total design flow.

df <- echoWaterGetFacilityInfo(output = "df", 
                               xmin = '-96.387509', 
                               ymin = '30.583572', 
                               xmax = '-96.281422', 
                               ymax = '30.640008',
                               qcolumns = '1,14,23,24,25',
                               p_ptype = "NPD")
head(df)
#> # A tibble: 4 × 6
#>   CWPName                SourceID  FacDerivedHuc CWPNAICSCodes FacLat FacLong
#>   <chr>                  <chr>     <chr>         <chr>          <dbl>   <dbl>
#> 1 CARTER CREEK WWTP      TX0047163 12070103      <NA>            30.6   -96.3
#> 2 CENTRAL UTILITY PLANT  TX0002747 12070103      <NA>            30.6   -96.3
#> 3 HEAT TRANSFER RESEARCH TX0106526 12070101      <NA>            30.6   -96.4
#> 4 TURKEY CREEK WWTP      TX0062472 12070101      <NA>            30.6   -96.4

When returned as sf dataframes, the data is suitable for immediate spatial plotting or analysis note: the spatial data endpoints do not currently appear to be functioning

library(ggspatial)
library(sf)
library(ggrepel)
library(purrr)

df <- echoWaterGetFacilityInfo(output = "sf", 
                               xmin = '-96.387509', 
                               ymin = '30.583572', 
                               xmax = '-96.281422', 
                               ymax = '30.640008',
                               p_ptype = "NPD")

##to make labels, need to map the coords and use geom_text :(
## can't help but think there is an easier way to do this

df <- df %>%
  mutate(
    coords = map(geometry, st_coordinates),
    coords_x = map_dbl(coords, 1),
    coords_y = map_dbl(coords, 2)
  )

ggplot(df) +
  annotation_map_tile(zoomin = -1, progress = "none") +
  geom_sf(inherit.aes = FALSE, shape = 21, 
          color = "darkred", fill = "darkred", 
          size = 2, alpha = 0.25) +
  geom_label_repel(data = df, aes(x = coords_x, y = coords_y, label = SourceID),
                   point.padding = .5, min.segment.length = 0.1,
                   size = 2, color = "dodgerblue") +
  theme_mps_noto() +
  labs(x = "Longitude", y = "Latitude", 
       title = "NPDES permits near Texas A&M",
       caption = "Source: EPA ECHO database")

Download discharge/emissions data

Use echoGetEffluent() or echoGetCAAPR() to download tidy dataframes of permitted water discharger Discharge Monitoring Report (DMR) or permitted emitters Clean Air Act annual emissions reports. Please note that all variables are returned as character vectors.

df <- echoGetEffluent(p_id = 'tx0119407', parameter_code = '00300')

df <- df %>%
  mutate(dmr_value_nmbr = as.numeric(dmr_value_nmbr),
         monitoring_period_end_date = as.Date(monitoring_period_end_date,
                                              "%m/%d/%Y")) %>%
  filter(!is.na(dmr_value_nmbr) & limit_value_type_code == "C1")

ggplot(df) +
  geom_line(aes(monitoring_period_end_date, dmr_value_nmbr)) +
  theme_mps_noto() +
  labs(x = "Monitoring period date",
       y = "Dissolved oxygen concentration (mg/l)",
       title = "Reported minimum dissolved oxygen concentration",
       subtitle = "NPDES ID = TX119407",
       caption = "Source: EPA ECHO")

Session Info

sessioninfo::platform_info()
#>  setting  value
#>  version  R version 4.3.1 (2023-06-16)
#>  os       Ubuntu 22.04.2 LTS
#>  system   x86_64, linux-gnu
#>  ui       X11
#>  language (EN)
#>  collate  C.UTF-8
#>  ctype    C.UTF-8
#>  tz       UTC
#>  date     2023-06-22
#>  pandoc   2.19.2 @ /usr/bin/ (via rmarkdown)
sessioninfo::package_info()
#>  ! package      * version date (UTC) lib source
#>    bit            4.0.5   2022-11-15 [1] CRAN (R 4.3.1)
#>    bit64          4.0.5   2020-08-30 [1] CRAN (R 4.3.1)
#>  P class          7.3-22  2023-05-03 [?] CRAN (R 4.3.1)
#>    classInt       0.4-9   2023-02-28 [1] CRAN (R 4.3.1)
#>    cli            3.6.1   2023-03-23 [1] CRAN (R 4.3.1)
#>    colorspace     2.1-0   2023-01-23 [1] CRAN (R 4.3.1)
#>    crayon         1.5.2   2022-09-29 [1] CRAN (R 4.3.1)
#>    curl           5.0.1   2023-06-07 [1] CRAN (R 4.3.1)
#>    DBI            1.1.3   2022-06-18 [1] CRAN (R 4.3.1)
#>    digest         0.6.31  2022-12-11 [1] CRAN (R 4.3.1)
#>    dplyr        * 1.1.2   2023-04-20 [1] CRAN (R 4.3.1)
#>    e1071          1.7-13  2023-02-01 [1] CRAN (R 4.3.1)
#>    echor        * 0.1.9   2023-06-22 [1] local
#>    evaluate       0.21    2023-05-05 [1] CRAN (R 4.3.1)
#>    fansi          1.0.4   2023-01-22 [1] CRAN (R 4.3.1)
#>    farver         2.1.1   2022-07-06 [1] CRAN (R 4.3.1)
#>    fastmap        1.1.1   2023-02-24 [1] CRAN (R 4.3.1)
#>    fs             1.6.2   2023-04-25 [1] CRAN (R 4.3.1)
#>    generics       0.1.3   2022-07-05 [1] CRAN (R 4.3.1)
#>    ggplot2      * 3.4.2   2023-04-03 [1] CRAN (R 4.3.1)
#>    glue           1.6.2   2022-02-24 [1] CRAN (R 4.3.1)
#>    gtable         0.3.3   2023-03-21 [1] CRAN (R 4.3.1)
#>    highr          0.10    2022-12-22 [1] CRAN (R 4.3.1)
#>    hms            1.1.3   2023-03-21 [1] CRAN (R 4.3.1)
#>    htmltools      0.5.5   2023-03-23 [1] CRAN (R 4.3.1)
#>    httr           1.4.6   2023-05-08 [1] CRAN (R 4.3.1)
#>    jsonlite       1.8.5   2023-06-05 [1] CRAN (R 4.3.1)
#>  P KernSmooth     2.23-21 2023-05-03 [?] CRAN (R 4.3.1)
#>    knitr          1.43    2023-05-25 [1] CRAN (R 4.3.1)
#>    labeling       0.4.2   2020-10-20 [1] CRAN (R 4.3.1)
#>    lifecycle      1.0.3   2022-10-07 [1] CRAN (R 4.3.1)
#>    magrittr       2.0.3   2022-03-30 [1] CRAN (R 4.3.1)
#>  P mpsTemplates * 0.2.0   2023-06-20 [?] Github (mps9506/mpsTemplates@d7a070e)
#>    munsell        0.5.0   2018-06-12 [1] CRAN (R 4.3.1)
#>    pillar         1.9.0   2023-03-22 [1] CRAN (R 4.3.1)
#>    pkgconfig      2.0.3   2019-09-22 [1] CRAN (R 4.3.1)
#>    plyr           1.8.8   2022-11-11 [1] CRAN (R 4.3.1)
#>    prettyunits    1.1.1   2020-01-24 [1] CRAN (R 4.3.1)
#>    progress       1.2.2   2019-05-16 [1] CRAN (R 4.3.1)
#>    proxy          0.4-27  2022-06-09 [1] CRAN (R 4.3.1)
#>    purrr          1.0.1   2023-01-10 [1] CRAN (R 4.3.1)
#>    R6             2.5.1   2021-08-19 [1] CRAN (R 4.3.1)
#>  P ragg         * 1.2.5   2023-01-12 [?] RSPM (R 4.3.0)
#>    Rcpp           1.0.10  2023-01-22 [1] CRAN (R 4.3.1)
#>    readr          2.1.4   2023-02-10 [1] CRAN (R 4.3.1)
#>  P renv           0.17.3  2023-04-06 [?] RSPM (R 4.3.0)
#>    rlang          1.1.1   2023-04-28 [1] CRAN (R 4.3.1)
#>    rmarkdown      2.22    2023-06-01 [1] CRAN (R 4.3.1)
#>    rstudioapi     0.14    2022-08-22 [1] CRAN (R 4.3.1)
#>    scales         1.2.1   2022-08-20 [1] CRAN (R 4.3.1)
#>    sessioninfo    1.2.2   2021-12-06 [1] any (@1.2.2)
#>    sf             1.0-13  2023-05-24 [1] CRAN (R 4.3.1)
#>    systemfonts    1.0.4   2022-02-11 [1] CRAN (R 4.3.1)
#>  P textshaping    0.3.6   2021-10-13 [?] RSPM (R 4.3.0)
#>    tibble         3.2.1   2023-03-20 [1] CRAN (R 4.3.1)
#>    tidyr          1.3.0   2023-01-24 [1] CRAN (R 4.3.1)
#>    tidyselect     1.2.0   2022-10-10 [1] CRAN (R 4.3.1)
#>    tzdb           0.4.0   2023-05-12 [1] CRAN (R 4.3.1)
#>    units          0.8-2   2023-04-27 [1] CRAN (R 4.3.1)
#>    utf8           1.2.3   2023-01-31 [1] CRAN (R 4.3.1)
#>    vctrs          0.6.3   2023-06-14 [1] CRAN (R 4.3.1)
#>    vroom          1.6.3   2023-04-28 [1] CRAN (R 4.3.1)
#>    withr          2.5.0   2022-03-03 [1] CRAN (R 4.3.1)
#>    xfun           0.39    2023-04-20 [1] CRAN (R 4.3.1)
#>    yaml           2.3.7   2023-01-23 [1] CRAN (R 4.3.1)
#> 
#>  [1] /home/runner/.cache/R/renv/library/echor-4ec080d0/R-4.3/x86_64-pc-linux-gnu
#>  [2] /home/runner/.cache/R/renv/sandbox/R-4.3/x86_64-pc-linux-gnu/5cd49154
#> 
#>  P ── Loaded and on-disk path mismatch.