Skip to contents

There are a number of errors that you might encounter using this rATTAINS. Here is a list of potential errors and fixes. Feel free to raise an issue if I missed something.

Network Connectivity

The following error message likely indicates an issue connecting to the EPA server:

state_summary(organization_id = "TCEQMAIN", reporting_cycle = "2022")

Potential issues/fixes:

Server Response

The server might also return http code messages. The most common will be 404 or 429. rATTAINS will generally provide a simple message and error when this is encountered:

actions(action_id = "R8-ND-2018-03")
#> 
#> Error: parse error: premature EOF
#>                                        
#>                      (right here) ------^

Potential issues/fixes:

  • Wait until the server is responsive.
  • Make less frequent requests.

Parsing Errors

The default behavior in rATTAINS is to parse JSON data downloaded from the API to one or more dataframes. These are returned as a single dataframe or list of dataframes depending on the function. rATTAINS also tries to flatten the data as much as possible. This design choice might have been a mistake because it can become a source of errors if the data returned by the API changes or is inconsistent. As of version 1.0.0 of the package the .unnest argument was added to most functions. By setting .unnest=FALSE many of these problems should be avoided.

Default behavior:

state_summary(organization_id = "TDECWR", reporting_cycle = "2022")
#> Unable to further unnest data, check for nested dataframes.
#> $items
#> # A tibble: 20 × 18
#>    organizationIdentifier organizationName organizationTypeText reportingCycle
#>    <chr>                  <chr>            <chr>                <chr>         
#>  1 TDECWR                 Tennessee        State                2022          
#>  2 TDECWR                 Tennessee        State                2022          
#>  3 TDECWR                 Tennessee        State                2022          
#>  4 TDECWR                 Tennessee        State                2022          
#>  5 TDECWR                 Tennessee        State                2022          
#>  6 TDECWR                 Tennessee        State                2022          
#>  7 TDECWR                 Tennessee        State                2022          
#>  8 TDECWR                 Tennessee        State                2022          
#>  9 TDECWR                 Tennessee        State                2022          
#> 10 TDECWR                 Tennessee        State                2022          
#> 11 TDECWR                 Tennessee        State                2022          
#> 12 TDECWR                 Tennessee        State                2022          
#> 13 TDECWR                 Tennessee        State                2022          
#> 14 TDECWR                 Tennessee        State                2022          
#> 15 TDECWR                 Tennessee        State                2022          
#> 16 TDECWR                 Tennessee        State                2022          
#> 17 TDECWR                 Tennessee        State                2022          
#> 18 TDECWR                 Tennessee        State                2022          
#> 19 TDECWR                 Tennessee        State                2022          
#> 20 TDECWR                 Tennessee        State                2022          
#> # ℹ 14 more variables: cycleStatus <chr>, combinedCycles <list>,
#> #   waterTypeCode <chr>, unitsCode <chr>, useName <chr>,
#> #   `Fully Supporting` <dbl>, `Fully Supporting-count` <int>,
#> #   `Not Assessed` <dbl>, `Not Assessed-count` <int>, parameters <list>,
#> #   `Not Supporting` <dbl>, `Not Supporting-count` <int>,
#> #   `Insufficient Information` <dbl>, `Insufficient Information-count` <int>

Using .unnest=FALSE returns nested columns. The tidyr family of unnest() functions is an easy way to flatten this data:

df <- state_summary(
  organization_id = "TDECWR",
  reporting_cycle = "2022",
  .unnest = FALSE
)

df$items |>
  dplyr::select(parameters) |>
  tidyr::unnest_wider(parameters) |>
  tidyr::unnest(c(
    parameterGroup,
    Cause,
    "Cause-count",
    "Meeting Criteria",
    "Meeting Criteria-count",
    "Insufficient Information",
    "Insufficient Information-count"
  ))
#> # A tibble: 67 × 7
#>    parameterGroup                         Cause `Cause-count` `Meeting Criteria`
#>    <chr>                                  <dbl>         <int>              <dbl>
#>  1 NUTRIENTS                            29134.              3                 NA
#>  2 SALINITY/TOTAL DISSOLVED SOLIDS/CHL…    56.1             1                 NA
#>  3 PH/ACIDITY/CAUSTIC CONDITIONS        23051               1                 NA
#>  4 SALINITY/TOTAL DISSOLVED SOLIDS/CHL…    56.1             1                 NA
#>  5 PH/ACIDITY/CAUSTIC CONDITIONS        23107.              2                 NA
#>  6 ORGANIC ENRICHMENT/OXYGEN DEPLETION   5269.              5                 NA
#>  7 SEDIMENT                              3772.              7                 NA
#>  8 SALINITY/TOTAL DISSOLVED SOLIDS/CHL…    56.1             1                 NA
#>  9 AMMONIA                                 56.1             1                 NA
#> 10 TEMPERATURE                             NA              NA              20459
#> # ℹ 57 more rows
#> # ℹ 3 more variables: `Meeting Criteria-count` <int>,
#> #   `Insufficient Information` <dbl>, `Insufficient Information-count` <int>

If the above option doesn’t work, rATTAINS can also provide the raw JSON data from the API. The jsonlite 📦 provides tools to convert JSON to nested lists and tibbles pretty easily. First, use the tidy=FALSE argument to return the unparsed JSON string, then uses jsonlite to convert that data to a nested list, then use tidyr to access the nested dataframes!

raw_data <- state_summary(
  organization_id = "TDECWR",
  reporting_cycle = "2022",
  tidy = FALSE
)

list_data <- jsonlite::fromJSON(
  raw_data,
  simplifyVector = TRUE,
  simplifyDataFrame = TRUE,
  flatten = FALSE
)

df <- tibble::as_tibble(list_data$data)
df |>
  tidyr::unnest(reportingCycles) |>
  tidyr::unnest(waterTypes) |>
  tidyr::unnest(useAttainments)
#> # A tibble: 20 × 18
#>    organizationIdentifier organizationName organizationTypeText reportingCycle
#>    <chr>                  <chr>            <chr>                <chr>         
#>  1 TDECWR                 Tennessee        State                2022          
#>  2 TDECWR                 Tennessee        State                2022          
#>  3 TDECWR                 Tennessee        State                2022          
#>  4 TDECWR                 Tennessee        State                2022          
#>  5 TDECWR                 Tennessee        State                2022          
#>  6 TDECWR                 Tennessee        State                2022          
#>  7 TDECWR                 Tennessee        State                2022          
#>  8 TDECWR                 Tennessee        State                2022          
#>  9 TDECWR                 Tennessee        State                2022          
#> 10 TDECWR                 Tennessee        State                2022          
#> 11 TDECWR                 Tennessee        State                2022          
#> 12 TDECWR                 Tennessee        State                2022          
#> 13 TDECWR                 Tennessee        State                2022          
#> 14 TDECWR                 Tennessee        State                2022          
#> 15 TDECWR                 Tennessee        State                2022          
#> 16 TDECWR                 Tennessee        State                2022          
#> 17 TDECWR                 Tennessee        State                2022          
#> 18 TDECWR                 Tennessee        State                2022          
#> 19 TDECWR                 Tennessee        State                2022          
#> 20 TDECWR                 Tennessee        State                2022          
#> # ℹ 14 more variables: cycleStatus <chr>, combinedCycles <list>,
#> #   waterTypeCode <chr>, unitsCode <chr>, useName <chr>,
#> #   `Fully Supporting` <dbl>, `Fully Supporting-count` <int>,
#> #   `Not Assessed` <dbl>, `Not Assessed-count` <int>, parameters <list>,
#> #   `Not Supporting` <dbl>, `Not Supporting-count` <int>,
#> #   `Insufficient Information` <dbl>, `Insufficient Information-count` <int>